# The Crystal Structure of α-Li<sub>3</sub>AlF<sub>6</sub>\*

By John H. Burns, Anthony C. Tennissen<sup>†</sup> and George D. Brunton

Chemistry and Reactor Chemistry Divisions, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A.

### (Received 17 April 1967)

The crystal structure of the room-temperature modification of  $Li_3AlF_6$  has been determined by threedimensional X-ray diffraction methods. Crystals are orthorhombic, with unit-cell dimensions a=9.510, b=8.2295, c=4.8762 Å. Each of the ten atoms of the formula occupies a general fourfold site of space group *Pna2*<sub>1</sub>. Nearly regular AlF<sub>6</sub> octahedra are linked by Li ions, each of which has six F neighbors at distances in the range 1.87 to 2.42 Å. The Al-F bond lengths vary from 1.786 to 1.830 Å. Although the pseudo face-centered cubic array of AlF<sub>6</sub> octahedra in  $\alpha$ -Li<sub>3</sub>AlF<sub>6</sub> is similar to that of Na<sub>3</sub>AlF<sub>6</sub>, its deviations from the ideal cryolite structure are considerable. It is unlikely that Li<sub>3</sub>AlF<sub>6</sub> transforms to the ideal cryolite structure at elevated temperature.

## Introduction

The structure of the mineral cryolite, Na<sub>3</sub>AlF<sub>6</sub>, determined by Náray-Szabó & Sasvári (1938), is actually monoclinic; but in an idealized cubic form it is recognized as a structure type for a family of related fluorides. These include K<sub>3</sub>AlF<sub>6</sub>, K<sub>2</sub>NaAlF<sub>6</sub>, (NH<sub>4</sub>)<sub>3</sub>AlF<sub>6</sub>, and (NH<sub>4</sub>)<sub>3</sub>FeF<sub>6</sub>. Steward & Rooksby (1953) studied the structural transitions of these compounds and found that each one becomes cubic at elevated temperature if it is not at room temperature, or else distorts at low temperature if cubic at room temperature. They infer that the non-cubic modifications result from rotation of the  $AlF_6$  (or  $FeF_6$ ) octahedra out of the most symmetrical orientation as the F atoms are shifted to accommodate alkali cations of various sizes. One exception is K<sub>2</sub>NaAlF<sub>6</sub> which remains cubic at all temperatures investigated because both kinds of cations are suitably coordinated in the cubic structure. Winkler (1952, 1954) found that below  $470^{\circ}$ C K<sub>2</sub>LiAlF<sub>6</sub> has a rhombohedral structure which becomes trigonal above this temperature. The fact that these two structures resemble cryolite in the arrangement of octahedra but that the compound never exhibits the cubic form is likely due to the inability of Li to have 12-fold coordination even at elevated temperature.

According to Garton & Wanklyn (1965)  $\text{Li}_3\text{AlF}_6$  has five polymorphic forms between room temperature and its melting point (783 °C). We undertook a singlecrystal study of the room temperature form,  $\alpha$ -Li<sub>3</sub>AlF<sub>6</sub>, because we felt that if a relationship to cryolite could be shown, some understanding of these polymorphs could be had in view of the ease with which cryolite transforms by rotation of the AlF<sub>6</sub> groups.

# Experimental

Lithium aluminum fluoride was prepared from a stoichiometric mixture of reagent grade LiF and commercial grade AlF<sub>3</sub> which had been purified by distillation. The components were melted together at about 780 °C in an evacuated nickel vessel. X-ray powder diffraction indicated the product to be mainly the  $\alpha$  phase. A single-crystal specimen of about 0.2 mm in largest dimension was selected for study. Although it was irregular in shape, absorption effects were negligible because of the light atoms of the compound.

Precession and Weissenberg photographs showed the systematic absence of h0l when h is odd and 0klwhen k+l is odd. These are characteristic for space groups  $Pna2_1$  and Pnam; the latter was ruled out because a mirror plane perpendicular to the short axis of the crystal would make spatial requirements incompatible with the atomic sizes. The orthorhombic unit cell has dimensions of a=9.510 (1), b=8.2295 (3), c=4.8762 (1) Å. These values were obtained from leastsquares adjustment to 35 single-crystal diffractometer  $2\theta$  angles, primarily of axial reflections (Cu  $K\alpha_1 =$ 1.54051 Å). There are four formula units in the primitive cell.

Intensity data were obtained from HKl layers with l=0 to 4 by the Weissenberg triple-film technique and Cu  $K\alpha$  X-rays. A calibrated film strip was used to evaluate the intensities by visual comparison. About 240 independent reflections were measured and their intensities reduced to structure amplitudes in the usual manner. After the structure was solved, data of higher accuracy appeared desirable, so 617 reflections were measured by  $2\theta$  scans with a General Electric single-crystal orienter and a scintillation-counter detector. Data out to  $2\theta = 60^{\circ}$  were collected employing Mo  $K\alpha$  radiation. Only these counter-measured data were used for the structure refinement.

The X-ray powder pattern was recorded with a diffractometer and agreed with that reported for  $\alpha$ -Li<sub>3</sub>AlF<sub>6</sub> by Garton & Wanklyn (1965). It was indexed on the basis of the orthorhombic cell given above, and the intensities calculated from the structure described herein agree with their observed values. Thus, their hexagonal unit cell for the  $\alpha$ -modification is erroneous. Probably their indexing of the patterns of the two other forms should be considered only tentative also, espe-

<sup>\*</sup> Research sponsored by the U.S. Atomic Energy Commission under contract with Union Carbide Corp.

<sup>†</sup> Research participant from Lamar State College of Technology, Beaumont, Texas.

cially since they require large unit cells and many absences. The cubic phase, for example, shows no reflections with a quadratic form less than 10.

# Structure determination

A three-dimensional Patterson function calculated with the Weissenberg intensity data was interpreted to yield the positions of one Al and six F atoms in the general sites of space group  $Pna2_1$ . An electron density map was then evaluated with the phases calculated from these seven atoms and the observed minus calculated amplitudes. This partial difference Fourier synthesis yielded peaks for the location of the three independent Li atoms. A refinement of these positions and individual isotropic temperature factors by the method of least squares resulted in a structure with a conventional Rvalue of 0.13. For calculation of structure factors the scattering curves for Li<sup>+</sup>, Al<sup>3+</sup>, and F<sup>-</sup> were taken from International Tables for X-ray Crystallography (1962).

The counter-measured data were then collected and refinement was resumed with the addition of anisotropic temperature factors. Shifts in positions from the earlier structure averaged about 0.3, 0.1, and 0.05 Å for Li, F, and Al atoms, respectively; and the discrepancy factor dropped sharply. Values of the refined parameters and their standard errors are given in Table 1. The nineteen strongest reflections were omitted from the final refinement cycles because they were observed systematically to be weaker than the calculated values, probably because of secondary extinction. The discrepancy index,  $R = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$ , for the other 598 reflections was 0.017.

The full-matrix least-squares program of Busing, Martin & Levy (1962) was used for the refinement. The weight, w, of each observation was taken equal to the reciprocal of its variance which was calculated from the counting statistics plus 3% of the intensity as an estimate of the other errors in the measurements. At the end of the refinement the standard deviation of an observation of unit weight,  $[\Sigma w(F_o^2 - F_c^2)/(n_o - n_v)]^{\frac{1}{2}}$ , was 1.0. In this expression  $n_o$  and  $n_v$  are numbers of observations and variables, respectively.

In Table 2 are listed the values of the observed and calculated structure factors and the phase angles.

# **Results and discussion**

The structure of  $\alpha$ -Li<sub>3</sub>AlF<sub>6</sub> is represented in Fig. 1 by a stereoscopic pair of drawings including a little more than the contents of one unit cell. For clarity of representation atoms are shown as small circles. The F atoms around each Al atom are connected by lines to make an octahedron; the Li atoms are between the

Table 1. Final structure parameters and standard errors ( $\times 10^5$ ) for  $\alpha$ -Li<sub>3</sub>AlF<sub>6</sub>

|       | $x(\sigma)$ | $y(\sigma)$ | $z(\sigma)$ | $\beta_{11}^{*}(\sigma)$ | $\beta_{22}(\sigma)$ | $\beta_{33}(\sigma)$ | $\beta_{12}(\sigma)$ | $\beta_{13}(\sigma)$ | $\beta_{23}(\sigma)$ |
|-------|-------------|-------------|-------------|--------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Al    | 12779 (4)   | 24031 (3)   | 0†          | 153 (3)                  | 145 (4)              | 398 (13)             | -9 (2)               | 0 (4)                | 0 (8)                |
| F(1)  | 22373 (7)   | 6821 (8)    | 14055 (26)  | 271 (7)                  | 276 (9)              | 804 (34)             | 72 (6)               | 37 (14)              | 88 (17)              |
| F(2)  | 2326 (8)    | 24326 (7)   | 30699 (23)  | 258 (7)                  | 377 (9)              | 743 (40)             | -31 (6)              | 122 (15)             | -40(13)              |
| F(3)  | 23609 (7)   | 23421 (8)   | 69815 (22)  | 261 (7)                  | 389 (10)             | 632 (41)             | -50(6)               | 122 (15)             | -34(15)              |
| F(4)  | 2888 (7)    | 40216 (8)   | 85078 (24)  | 304 (7)                  | 319 (8)              | 936 (33)             | 110 (7)              | 26 (16)              | 97 (15)              |
| F(5)  | 24358 (7)   | 38174 (8)   | 17257 (25)  | 264 (6)                  | 313 (9)              | 877 (35)             | - 84 (6)             | - 32 (14)            | - 52 (16)            |
| F(6)  | 1361 (6)    | 9168 (8)    | 83164 (24)  | 269 (7)                  | 314 (8)              | 848 (35)             | - 104 (6)            | -1 (14)              | - 82 (14)            |
| Li(1) | 37529 (21)  | 34902 (28)  | 50727 (79)  | 292 (20)                 | 663 (30)             | 1776 (90)            | -15 (20)             | 258 (38)             | - 60 (70)            |
| Li(2) | 10546 (22)  | 45729 (27)  | 49687 (93)  | 311 (20)                 | 547 (28)             | 1372 (88)            | 22 (20)              | -28 (58)             | 218 (61)             |
| Li(3) | 35387 (22)  | 54574 (26)  | 235 (92)    | 386 (21)                 | 462 (27)             | 957 (81)             | - 96 (19)            | 23 (58)              | -8 (59)              |

\* Coefficients in the temperature factor expression:  $\exp[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2hk\beta_{12} + 2hl\beta_{13} + 2kl\beta_{23})]$ .

 $\dagger$  Arbitrary value to establish origin on  $2_1$  axis.



Fig. 1. Stereoscopic pair of drawings of the structure of  $\alpha$ -Li<sub>3</sub>AlF<sub>6</sub>.

octahedra. The lattice on which the octahedra are arrayed is very similar to the one in  $Na_3AlF_6$ , a fact that will be examined in detail later.

Interatomic distances and their standard errors are listed in Table 3. These include all the cation-anion contacts as well as the F-F distances within one octahedron. The next nearest Li-F distance is greater than 3.0 Å. It is noteworthy that the five shortest F-F distances are within edges of the AlF<sub>6</sub> octahedron which

are shared with Li atoms: one with Li(1), two with Li(2), and two with Li(3). Expressed differently, the F-Al-F angles subtended by the shared edges average  $87.75^{\circ}$  compared with  $91.60^{\circ}$  for the unshared edges. This is a good example of the effect of repulsion of the cations sharing an edge, as stated in Pauling's (1960) fourth rule for the stability of complex ionic crystals.

In Fig.2 more details of coordination and thermal motion are shown. Each cation and its surrounding

Table 2. Observed and calculated structure factors ( $\times$  10) and phase angles (millicycles) Reflections omitted from the refinement are denoted by X after the first Miller index.

| H 08                                                     | S CAL                                                                            | ANG                                     | н оа                                                    | S CAL                                                                                          | ANG                                                       | н                       | OBS CAL                                                                                                                                 | AN G                                                     | н                                      | 085                                                       | CAL                                                       | ANG                                                            | н                                 | 085                                                  | CAL                                                  | ANG                                                           | н                       | OBS                                             | CAL                                                  | ANG                                                    | н                                    | 085                                             | CAL                                            | ANG                                                      | н                          | 085                                             | CAL                                             | AN G                                              |
|----------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------|-----------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|-------------------------|-------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|--------------------------------------|-------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------|-------------------------------------------------|-------------------------------------------------|---------------------------------------------------|
|                                                          | н о                                                                              | 0                                       |                                                         | н 7                                                                                            | 0                                                         |                         | n 3                                                                                                                                     | <b>)</b>                                                 |                                        | н                                                         | 0 5                                                       |                                                                |                                   | н                                                    | 7 2                                                  | 2                                                             |                         | н                                               | 4 3                                                  | •                                                      |                                      | н                                               | 3 4                                            | •                                                        |                            | н                                               | 35                                              |                                                   |
| 2 3<br>4x 67<br>6 4<br>8x 64<br>10 10<br>12 11           | 4 33<br>8 863<br>5 43<br>9 111<br>4 114<br>H 1                                   | 000000000000000000000000000000000000000 | 2 29<br>3 7<br>4 8<br>5 11<br>6 9<br>7<br>8 12<br>9 14  | 4 261<br>4 73<br>9 90<br>9 120<br>2 52<br>8 2<br>2 122<br>0 138                                | 00000000                                                  | 9<br>10<br>11<br>12     | 47 48<br>123 123<br>59 59<br>143 144<br>H 4<br>38 37                                                                                    | 98<br>11<br>-41<br>-191<br>1<br>61                       | 0<br>2x<br>4x<br>6x<br>10<br>12        | 285<br>981 1<br>862 1<br>477<br>95<br>106<br>203          | 300<br>1173<br>1016<br>501<br>93<br>107<br>202            | 249<br>-2<br>-227<br>-210<br>-35                               | 67 8 9 0,                         | 253<br>125<br>140<br>57<br>H<br>38                   | 255<br>126<br>139<br>56<br>8 2<br>38                 | 59<br>-170<br>230<br>-146<br>2<br>-229                        | 9<br>10<br>11<br>0<br>1 | 95<br>293<br>57<br>H<br>321<br>53               | 93<br>295<br>56<br>5 3<br>322<br>54                  | 210<br>-247<br>188<br>-220<br>211                      | 12345678                             | 82<br>262<br>42<br>13<br>25<br>14<br>9<br>26    | 80<br>260<br>42<br>9<br>26<br>14<br>4<br>28    | 33<br>-0<br>-25<br>168<br>-65<br>171<br>163<br>-69       | 01234567                   | 32<br>62<br>281<br>92<br>384<br>96<br>150<br>51 | 33<br>61<br>278<br>91<br>388<br>97<br>150<br>53 | 23<br>22<br>-14<br>141<br>-241<br>207<br>26<br>59 |
| 1 11<br>2x 60<br>3 19<br>4 7<br>5 10<br>6 10<br>7 10     | 2 110<br>3 681<br>51 144<br>79 79<br>19 195<br>13 178<br>10 49                   | 00000000                                | 0 31<br>1 14<br>2 2                                     | н 8<br>5 320<br>4 145<br>0 24<br>8 27                                                          | 0                                                         | 234567890               | 143     143       140     141       271     274       87     89       330     338       175     175       255     255       103     102 | -178<br>20<br>48<br>-183<br>203<br>-100<br>12<br>-201    | 1234567                                | 54<br>209<br>146<br>286<br>69<br>427                      | 54<br>203<br>148<br>287<br>70<br>443                      | -148<br>-37<br>114<br>211<br>-140<br>20                        | 2345678                           | 80<br>110<br>252<br>108<br>81<br>56<br>53            | 55<br>77<br>112<br>253<br>108<br>80<br>58<br>51      | -229<br>-20<br>10<br>-60<br>-180<br>15<br>87                  | 434567890               | 37<br>80<br>95<br>49<br>227<br>22               | 105<br>38<br>78<br>78<br>95<br>48<br>225<br>19<br>75 | 171<br>172<br>-188<br>-26<br>-114<br>-232<br>40        | 10<br>0<br>1<br>2                    | 245<br>H<br>400<br>107<br>28                    | 401<br>109<br>28                               | -26<br>-110                                              | 1234                       | 26<br>95<br>91<br>78                            | 4 5<br>24<br>95<br>91 -<br>77                   | 207<br>203<br>-171<br>-51                         |
| 9 11<br>10 42<br>11 3<br>12 2<br>13 7                    | 103<br>12 114<br>15 445<br>19 33<br>13 9<br>78 80<br>H 2                         | 000000000000000000000000000000000000000 | 5 1<br>6 1<br>7 11<br>8 2<br>9 0                        | 3 33<br>1 6<br>3 110<br>4 224<br>8 68<br>H 9                                                   | 00000                                                     | 11<br>12<br>0<br>1<br>2 | 92 91<br>177 173<br>H 5<br>206 207<br>69 67<br>221 218                                                                                  | 46<br>44<br>1<br>250<br>179<br>23                        | 8<br>9<br>10<br>11<br>12               | 243<br>55<br>34<br>107<br>158<br>H                        | 244<br>54<br>33<br>106<br>153<br>2 2                      | 248<br>-44<br>-228<br>154<br>209                               | 123456                            | H<br>38<br>148<br>71<br>43<br>77<br>132              | 9 2<br>35<br>147<br>69<br>42<br>79<br>136            | -35<br>9<br>-66<br>-231<br>78<br>-18                          | 1 2 3 4 5               | H<br>69<br>136<br>45<br>73<br>94                | 6 1<br>69<br>134<br>46<br>73<br>93                   | 197<br>245<br>-76<br>-46<br>238                        | 5456789                              | 54<br>29<br>28<br>88<br>208<br>17<br>H          | 52<br>30<br>28<br>88<br>206<br>20<br>5         | -10<br>-37<br>-140<br>-54<br>0<br>212                    | 012                        | 213<br>67<br>H<br>45<br>42<br>51                | 213<br>68<br>5 5<br>43<br>42<br>50              | -218<br>17<br>-196<br>-244<br>-148                |
| 0X 42<br>1 9<br>2 2<br>3 9<br>4 13<br>5 13<br>6 1<br>7 0 | 27 445   52 51   20 17   59 59   54 131   33 131   13 14   50 61                 | 00000000                                | 1 1<br>2 1<br>3 1<br>4 5<br>6 1<br>7 8                  | 4 55<br>6 145<br>1 12<br>4 22<br>12 79<br>12 171<br>91 91<br>8 3                               | 000000000000000000000000000000000000000                   | 345678910               | 96 94<br>248 252<br>35 33<br>142 144<br>41 39<br>154 152<br>66 67<br>81 78                                                              | 242<br>-230<br>-154<br>-32<br>-147<br>192<br>-206<br>-6  | 012345674                              | 23<br>62<br>38<br>100<br>397<br>33<br>65<br>88<br>121     | 25<br>63<br>38<br>98<br>409<br>34<br>66<br>89             | 179<br>68<br>113<br>-94<br>1<br>116<br>-30<br>-225             | 7 01234                           | 34<br>H<br>185<br>102<br>45<br>73                    | 35<br>10<br>186<br>99<br>45<br>73                    | 147<br>2<br>84<br>-136<br>194<br>152<br>-65                   | 6789<br>01              | 209<br>83<br>78<br>45<br>H<br>163               | 209<br>82<br>80<br>46<br>7<br>158<br>70              | -247<br>176<br>5<br>-178<br>212<br>71                  | 12345678                             | 19<br>245<br>83<br>91<br>36<br>255<br>23<br>120 | 20<br>241<br>82<br>90<br>37<br>250<br>25       | -109<br>9<br>227<br>203<br>-10<br>-59                    | 34567                      | 31<br>265<br>46<br>48<br>75<br>H                | 30<br>265<br>47<br>51<br>70<br>6 5              | -40<br>-242<br>222<br>-244<br>156                 |
| 9<br>10<br>11<br>12<br>13                                | 57 67<br>82 85<br>42 40<br>06 105<br>56 58<br>H 3                                | 0                                       | 0 19<br>1<br>2 10<br>3 11<br>4 10<br>5 10               | H 10<br>H 153<br>2 3<br>D2 100<br>H 126<br>D2 191<br>D2 105                                    | 0<br>000000                                               | 1 2 3 4 5               | H 6<br>110 108<br>243 244<br>78 80<br>54 55<br>76 76                                                                                    | 1<br>-219<br>246<br>-227<br>-12<br>147                   | 10<br>11<br>12                         | 50<br>30<br>82<br>149<br>H                                | 48<br>21<br>80<br>149<br>3 2<br>67                        | -96<br>-215<br>-12*<br>-33                                     | 5                                 | 84<br>H<br>52<br>H                                   | 83<br>11<br>54<br>0                                  | 121<br>2<br>-25<br>3                                          | 2345678                 | 95<br>126<br>278<br>78<br>43<br>23<br>89        | 96<br>127<br>280<br>77<br>44<br>19<br>91             | -107<br>174<br>-234<br>144<br>-21<br>24<br>-244        | 9 0123                               | 80<br>H<br>69<br>120<br>278<br>159              | 62<br>68<br>121<br>278<br>158                  | -112<br>200<br>-248<br>-231<br>173                       | 2345                       | 97<br>55<br>67<br>80<br>H                       | 100<br>56<br>70<br>84<br>7 5<br>138             | -240<br>162<br>13<br>-205                         |
| 1 2 10<br>3 4 5 10<br>6 30<br>7 8                        | 97 91<br>50 151<br>26 27<br>25 26<br>27 128<br>80 396<br>79 80<br>21 21          | 000000000000000000000000000000000000000 | 6<br>1<br>2 1<br>3<br>4                                 | H 11<br>H 11<br>B1 83<br>21 121<br>79 80<br>25 28                                              | 0<br>0<br>0<br>0<br>0                                     | 6<br>7<br>9<br>10<br>11 | 91 92<br>17 15<br>58 56<br>92 93<br>170 170<br>51 52<br>H 7                                                                             | -232<br>22<br>78<br>-178<br>240<br>-242                  | 234567890                              | 231<br>81<br>168<br>104<br>231<br>32<br>142<br>59<br>136  | 232<br>81<br>164<br>103<br>228<br>32<br>143<br>60<br>134  | 59<br>-236<br>59<br>-4<br>135<br>215<br>-75<br>9               | 2<br>6<br>8<br>10<br>12           | 163<br>135<br>340<br>134<br>74<br>81                 | 165<br>129<br>345<br>133<br>74<br>80                 | -243<br>-30<br>-247<br>19<br>-234<br>-73                      | 1234567                 | 86<br>223<br>80<br>21<br>46<br>61<br>29         | 8<br>222<br>81<br>23<br>45<br>63<br>33               | -208<br>237<br>246<br>-239<br>185<br>-163<br>188       | *<br>5<br>6<br>7<br>8                | 246<br>146<br>172<br>102<br>89<br>H             | 244<br>144<br>168<br>103<br>87<br>7<br>47      | -34<br>93<br>246<br>-225<br>8                            | 1234 02                    | 80<br>107<br>82<br>172<br>H<br>495<br>51        | 80<br>104<br>82<br>170<br>0 6<br>502<br>52      | -134<br>222<br>-200                               |
| 10<br>11<br>12<br>0 1<br>1                               | 74 73<br>12 8<br>38 37<br>H 4<br>70 169<br>62 62                                 | 0<br>0<br>0                             | 2X 4<br>4 1<br>6 1<br>8 1<br>10 2<br>12                 | H 0<br>4 426<br>46 146<br>03 104<br>11 111<br>77 284<br>53 50                                  | 1<br>-248<br>-20<br>-238<br>49<br>247<br>-95              | 01234567                | 371 379<br>137 136<br>74 75<br>52 52<br>194 197<br>56 56<br>59 58<br>73 72                                                              | 222<br>-156<br>106<br>-89<br>-213<br>14<br>105<br>-245   | 11<br>12<br>0<br>1<br>2                | 25<br>78<br>H<br>248<br>124<br>182                        | 25<br>79<br>4 2<br>251<br>125<br>174                      | -63<br>-212<br>2<br>2<br>225<br>-240                           | 01234567                          | 156<br>116<br>225<br>94<br>262<br>107<br>107<br>73   | 158<br>117<br>221<br>92<br>263<br>109<br>107<br>72   | -246<br>-54<br>-6<br>138<br>240<br>-113<br>28<br>-238         | 01234                   | H<br>292<br>203<br>88<br>66<br>53               | 9<br>292<br>204<br>90<br>64<br>54                    | 241<br>-241<br>231<br>-232<br>221                      | 234 567                              | 107<br>67<br>109<br>67<br>147<br>96             | 105<br>67<br>108<br>68<br>146<br>98<br>8       | 38<br>-209<br>-173<br>-3<br>-52<br>119                   | 1 2 3                      | 36<br>62<br>H<br>51<br>194<br>20                | 36<br>58<br>1 6<br>52<br>194<br>19              | -210<br>-144<br>-5<br>95                          |
| 2<br>3<br>4<br>4<br>5<br>6<br>7<br>8<br>1<br>9<br>10     | 60 60<br>61 163<br>01 403<br>23 25<br>11 13<br>29 29<br>35 130<br>44 44<br>15 16 | 000000000000000000000000000000000000000 | 0X 4<br>1<br>2<br>3<br>4 1<br>5                         | H 1<br>74 459<br>85 81<br>15 15<br>82 81<br>51 148<br>34 34                                    | 1<br>246<br>-242<br>183<br>6<br>-237<br>-241              | 9<br>10<br>1<br>2<br>3  | 202 204<br>30 34<br>41 43<br>H 8<br>66 62<br>194 190<br>107 105                                                                         | -200<br>-106<br>1<br>-209<br>245<br>222                  | 4<br>5<br>6<br>7<br>8<br>9<br>10<br>11 | 288<br>83<br>105<br>34<br>173<br>22<br>51<br>63           | 288<br>83<br>105<br>34<br>175<br>24<br>49<br>62           | -13<br>176<br>214<br>91<br>-7<br>7<br>-185<br>-90              | 9<br>10<br>11<br>12               | 63<br>42<br>21<br>120                                | 41<br>42<br>21<br>122<br>2<br>2<br>55                | -173<br>-139<br>121<br>226<br>3                               | 6<br>1<br>2<br>3        | 68<br>H<br>106<br>134<br>47                     | 68<br>10<br>109<br>131<br>50                         | 221<br>3<br>231<br>-237<br>-229                        | 0<br>1<br>2<br>3<br>4<br>5           | 171<br>77<br>140<br>80<br>72<br>19<br>н         | 169<br>78<br>139<br>82<br>76<br>22<br>9        | -8<br>-64<br>-202<br>77<br>45<br>134                     | 56012                      | 71<br>31<br>H<br>117<br>55<br>158               | 70<br>30<br>2 6<br>120<br>56<br>159             | -156<br>22<br>42<br>174<br>242                    |
| 11<br>12 1<br>2x 5                                       | 10 0<br>49 146<br>H 5<br>00 99<br>16 569<br>48 46<br>29 27                       | 000000                                  | 6<br>7 1<br>8 2<br>9<br>10<br>11<br>12 1<br>13          | 29   28     25   127     16   220     77   75     31   32     92   92     14   115     67   64 | -224<br>125<br>238<br>-149<br>-227<br>-142<br>-230<br>-60 | 456789                  | 90 87<br>58 60<br>226 226<br>102 102<br>108 109<br>73 72<br>H 9                                                                         | -7<br>-174<br>-242<br>244<br>-61<br>109                  | 123456                                 | 71<br>317<br>33<br>153<br>38<br>366                       | 71<br>321<br>34<br>155<br>39<br>381                       | 2<br>-99<br>6<br>38<br>209<br>8<br>-6                          | 2)<br>3 4 5<br>6 7 8<br>9 10      | 512<br>34<br>21<br>99<br>51<br>50<br>52<br>57<br>339 | 507<br>35<br>19<br>98<br>50<br>50<br>53<br>59<br>340 | 246<br>-200<br>49<br>121<br>-148<br>-136<br>165<br>171<br>242 | 0<br>2x<br>6<br>8<br>10 | 95<br>552<br>501<br>323<br>168<br>119           | 96<br>574<br>504<br>324<br>167<br>118                | 43<br>-243<br>4<br>240<br>-36<br>-218                  | 1<br>2<br>3<br>2                     | 76<br>149<br>45<br>H<br>127<br>116              | 76<br>148<br>45<br>0<br>127<br>116             | 35<br>-3<br>-61<br>5<br>-234<br>9                        | 3456                       | 18<br>128<br>76<br>100<br>H<br>32<br>96         | 20<br>128<br>75<br>97<br>3 6<br>31<br>98        | -32<br>128<br>-243<br>-58<br>0                    |
| 5<br>6<br>7<br>8<br>9<br>10 3<br>11 1<br>12              | 60 61<br>71 67<br>3 11<br>20 18<br>21 23<br>45 348<br>10 111<br>27 28            | 000000000000000000000000000000000000000 | 1<br>2x 3<br>3<br>4 3<br>5<br>6x 4                      | H 2<br>40 39<br>72 369<br>51 50<br>24 328<br>40 41<br>90 521                                   | 1<br>-237<br>-88<br>14<br>245<br>240<br>-71               | 012345678               | 110 111<br>161 157<br>220 218<br>207 204<br>208 211<br>178 176<br>115 113<br>129 128                                                    | 23<br>-32<br>43<br>-86<br>185<br>-172<br>21<br>3<br>-167 | 7<br>8<br>9<br>10<br>11                | 103<br>154<br>45<br>76<br>47                              | 102<br>153<br>47<br>77<br>47<br>1 6 2<br>131              | 64<br>-245<br>158<br>33<br>223<br>2<br>126                     | 11<br>0)<br>1<br>2<br>3           | 49<br>(1022<br>244<br>64<br>82<br>265                | 49<br>3<br>1168<br>246<br>64<br>81<br>266            | -130<br>3<br>249<br>-235<br>74<br>-233<br>-247                | 1234567                 | H<br>59<br>205<br>52<br>158<br>51<br>252<br>104 | 1<br>58<br>200<br>52<br>158<br>50<br>251<br>104      | 4<br>139<br>15<br>186<br>-218<br>-69<br>-30<br>86      | 6<br>8<br>0<br>1<br>2<br>3           | 227<br>126<br>H<br>37<br>70<br>139<br>109       | 225<br>128<br>1<br>36<br>70<br>139<br>107      | 245<br>-32<br>5<br>209<br>-162<br>3<br>247               | 3<br>4<br>5<br>0<br>1<br>2 | 28<br>89<br>33<br>H<br>62<br>71<br>111          | 30<br>90<br>35<br>4<br>64<br>72<br>112          | 164<br>216<br>-1<br>-1<br>-67<br>246<br>242       |
| 0x 7<br>1 4<br>2 1<br>3 1<br>4 2<br>5 1                  | H 6<br>89 935<br>11 417<br>01 101<br>65 166<br>82 288<br>48 149                  | 0 0000000000000000000000000000000000000 | 8 2<br>9<br>10<br>11<br>12 1<br>13                      | 73 278<br>85 85<br>85 86<br>63 63<br>65 161<br>56 55<br>H 3                                    | -15<br>162<br>-220<br>81<br>24<br>82<br>1                 | 1 2 3 4 5 4             | H 10<br>49 49<br>98 97<br>98 98<br>90 90<br>105 107                                                                                     | 1<br>-135<br>-184<br>103<br>-221                         | 123456780                              | 204<br>427<br>253<br>398<br>229<br>217<br>142<br>43<br>26 | 203<br>443<br>258<br>411<br>230<br>216<br>141<br>40<br>28 | -206<br>227<br>-147<br>20<br>-67<br>-246<br>-210<br>-37<br>232 | 5<br>6<br>7<br>8<br>9<br>10<br>11 | 64<br>53<br>71<br>403<br>132<br>80<br>12             | 65<br>56<br>73<br>416<br>130<br>80<br>14             | -209<br>39<br>-207<br>-244<br>-227<br>-153<br>-139            | 8<br>9<br>10<br>0       | 186<br>82<br>79<br>375<br>52<br>139             | 1 83<br>85<br>80<br>1 2<br>374<br>52<br>136          | 241<br>-55<br>50<br>4<br>-198<br>-200                  | 456789                               | 247<br>47<br>93<br>40<br>86<br>18               | 245<br>46<br>93<br>41<br>86<br>18<br>2         | -247<br>-148<br>-44<br>91<br>226<br>189<br>5             | 3<br>4<br>1<br>2           | 70<br>203<br>H<br>40<br>193<br>H                | 71<br>202<br>5 6<br>190<br>6 4                  | -156<br>10<br>152<br>-10                          |
| 7 1<br>8 3<br>9 2<br>10<br>11                            | 61 62<br>09 108<br>12 315<br>11 211<br>39 39<br>17 16<br>H 7                     | 00000                                   | 0 2<br>1 2<br>2x 8<br>3 2<br>4x 6<br>5 2<br>6x 4<br>7 1 | 51 265<br>63 261<br>25 1165<br>91 297<br>81 833<br>34 235<br>71 510<br>29 130                  | 215<br>-35<br>5<br>-87<br>249<br>-162<br>-11<br>-8        | 0<br>1<br>2<br>3        | H 11<br>83 84<br>73 73<br>94 95<br>107 106                                                                                              | 1<br>-162<br>98<br>58<br>-159                            | 10<br>1<br>2<br>3<br>4                 | 47<br>21<br>110<br>117<br>123                             | 44<br>1 7 1<br>18<br>109<br>117<br>122<br>95              | 199<br>2<br>187<br>-70<br>143<br>189<br>-60                    | 12345678                          | 100<br>294<br>63<br>65<br>134<br>65<br>31<br>102     | 99<br>293<br>62<br>66<br>133<br>64<br>31<br>100      | 168<br>250<br>-225<br>171<br>190<br>-220<br>-121<br>197       | 345678910               | 69<br>53<br>51<br>74<br>57<br>197<br>78<br>41   | 71<br>51<br>49<br>74<br>59<br>193<br>80<br>40        | -147<br>99<br>188<br>248<br>-114<br>-25<br>104<br>-135 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 41<br>207<br>62<br>87<br>18<br>265<br>67<br>88  | 44<br>205<br>64<br>88<br>15<br>265<br>66<br>85 | 133<br>-249<br>-202<br>-78<br>-94<br>-246<br>-120<br>-19 | 0                          | 276                                             | 275                                             | -8                                                |

Table 3. Interatomic distances and standard errors

|             | Distance      | (10 <sup>3</sup> σ) |             | Distance      | (10 <sup>3</sup> σ) |
|-------------|---------------|---------------------|-------------|---------------|---------------------|
| Al-F(4)     | 1·786 Å       | (1)                 | Li(1)-F(2)  | 1·874 Å       | (3)                 |
| F(2)        | 1.797         | (2)                 | F(3)        | 1.874         | (3)                 |
| F(3)        | 1.797         | (1)                 | F(5)        | 2.075         | (4)                 |
| F(5)        | 1.810         | (1)                 | F(6)        | 2.114         | (4)                 |
| F(1)        | 1.819         | (1)                 | F(1)        | 2.136         | (3)                 |
| F(6)        | 1.830         | (1)                 | F(6)        | <b>2</b> ·416 | (3)                 |
| Li(2)-F(4)  | 1.865         | (3)                 | Li(3)-F(5)  | 1.900         | (3)                 |
| F(4)        | 1.927         | (5)                 | F(1)        | 1.921         | (5)                 |
| F(1)        | 1.991         | (3)                 | F(3)        | 2.012         | (3)                 |
| F(2)        | 2·138         | (3)                 | F(6)        | 2.069         | (3)                 |
| F(5)        | <b>2</b> ·148 | (4)                 | F(6)        | 2.076         | (4)                 |
| F(3)        | 2.424         | (3)                 | F(2)        | 2.217         | (3)                 |
| F(1)-F(2)   | 2.524         | (1)                 | F(2)-F(6)   | 2.634         | (2)                 |
| F(3)        | 2.556         | (2)                 | F(3) - F(4) | 2.519         | à                   |
| F(5)        | 2.592         | (1)                 | F(5)        | 2.614         | (2)                 |
| F(6)        | <b>2</b> ·510 | (1)                 | F(6)        | 2.505         | (1)                 |
| F(2) - F(4) | 2.581         | (2)                 | F(4)-F(5)   | 2.581         | (1)                 |
| F(5)        | 2.473         | (1)                 | F(6)        | 2.561         | (1)                 |



Fig.2. Coordination polyhedra for each cation. Atoms are represented by thermal ellipsoids.

octahedron of F atoms is illustrated by means of the 50% probability ellipsoids of thermal motion derived from the temperature factors (Johnson, 1965). From the shapes and orientations of these ellipsoids the greater influence on the thermal motion of the F atoms by the Al-F bonds than by the Li-F bonds is apparent. Both kinds of bond are principally ionic in character, but the Al-F electrostatic bond strength is greater by at least a factor of three. Thus the F atoms vibrate more perpendicular to the Al-F lines than along them, while the presence of the Li atoms results in no apparent constraints on the thermal motion. Also it appears that the nearly regular  $AlF_6$  octahedra are achieved at the expense of regularity around the Li atoms, which have six neighbors but with a wide range of distances.

It is important to compare the structure of  $\alpha$ -Li<sub>3</sub>AlF<sub>6</sub> with that of cryolite because the latter is a well known structure type. Steward & Rooksby (1953) have examined the family of compounds related to cryolite and have concluded that while they all have the basic feature of a three-dimensional framework of AlF<sub>6</sub> octahedra linked by alkali ions, some members have the

octahedra rotated out of the most symmetrical orientation. These workers also observed that at elevated temperatures the misorientation and distortions, wherever present, were removed and the cubic symmetry of the idealized cryolite structure achieved.

A comparison of the structures of cryolite and  $\alpha$ -Li<sub>3</sub>AlF<sub>6</sub> is shown in Fig.3. The pseudo-cubic cells shown are chosen in such a way as to emphasize the relationship to the idealized cubic cryolite structure rather than to show the actual crystal symmetries which are monoclinic and orthorhombic, respectively. The idealized structure is visualized by rotating the octahedron\* in the cryolite structure so that its fourfold axes point along the cube edges. Then the Na atoms on the edges are in octahedral coordination, and the Na atoms within the cell (larger circles for ease of distinction) have 12 F neighbors, three from each of the four AlF<sub>6</sub> octahedra around it. Indeed, this is pre-

\* The octahedra on the left and right faces of the cube are oriented the same, but those centered in the other faces are in a symmetry related orientation. This difference disappears in the idealized structure.





Fig. 3. Comparison of the structures of cryolite (upper) and  $\alpha$ -Li<sub>3</sub>AlF<sub>6</sub>. The smallest circles represent Al atoms. Only one octahedron of F atoms is shown, but each Al atom has an octahedron associated with it. Medium and large circles distinguish cations, Na or Li in the respective structures, which are identical except for symmetry.

sumed to be the structure of  $Na_3AlF_6$  when it becomes cubic at 540 °C. In the structure of  $K_2NaAlF_6$ , which is cubic at all temperatures studied, K atoms occupy the sites within the cube and Na atoms the sites on the edges.

The deviations from the ideal cryolite structure are greater in  $\alpha$ -Li<sub>3</sub>AlF<sub>6</sub> than in Na<sub>3</sub>AlF<sub>6</sub>, but the similarity can still be recognized by reference to Fig. 3. The octahedra are in a pseudo face-centered cubic array, but the Li atoms are displaced from the center of the edges and the center of the cell. The 'cube' of eight Li atoms within the cell is also quite distorted.

It is unlikely that Li<sub>3</sub>AlF<sub>6</sub> exists at any temperature in the idealized cryolite structure in which two thirds of the Li atoms would have 12-fold coordination; but this would not preclude there being a cubic structure of this type which had these Li atoms in a disordered arrangement within the space surrounded by 12 F atoms. The cubic cell assigned by Garton & Wanklyn (1965) to  $\gamma$ -Li<sub>3</sub>AlF<sub>6</sub> does not have the proper dimensions indicative of a cryolite structure; in fact, the assignment of cubic symmetry to this phase is questionable as described earlier. On the other hand,  $\delta$ - or  $\varepsilon$ -Li<sub>3</sub>AlF<sub>6</sub> may be cubic; data are not available for their powder patterns.

#### References

- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS, a Fortran Crystallographic Least-Squares Program, ORNL TM-305: Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- GARTON, G. & WANKLYN, B. M. (1965). J. Inorg. Nucl. Chem. 27, 2466.
- International Tables for X-ray Crystallography (1962). Vol. III, p. 202. Birmingham: Kynoch Press.
- JOHNSON, C. K. (1965). ORTEP: A Fortran Thermal-Ellipsoid Plot Program for Crystal Structure Illustrations, ORNL-3794, Revised: Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- NÁRAY-SZABÓ, S. & SASVÁRI, K. (1938). Z. Kristallogr. 99, 27.
- PAULING, L. (1960). The Nature of the Chemical Bond, 3rd edition, p. 561. Ithaca: Cornell Univ. Press.
- STEWARD, E. G. & ROOKSBY, H. P. (1953). Acta Cryst. 6, 49. WINKLER, H. G. F. (1952). Heidelberg. Beitr. Min. 3, 297;
  - Structure Reports, 16, 174.
- WINKLER, H. G. F. (1954). Acta Cryst. 7, 33.

Acta Cryst. (1968). B24, 230

# The Crystal Structure of Na<sub>7</sub>Zr<sub>6</sub>F<sub>31</sub>\*

BY JOHN H. BURNS, RAYMOND D. ELLISON AND HENRI A. LEVY

Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A.

### (Received 23 May 1967)

The structure of Na<sub>7</sub>Zr<sub>6</sub>F<sub>31</sub> was determined by single-crystal X-ray and neutron diffraction methods. Zirconium atomic positions were deduced from an X-ray Patterson map, and the remaining atomic sites from electron-density maps. Refinement including anisotropic thermal parameters was carried out by the method of least squares. The neutron scattering amplitude of Zr was determined to be  $0.69\pm0.01 \times 10^{-12}$  cm. The rhombohedral unit cell, with a=8.5689 Å,  $\alpha=107^{\circ}21'$ , contains one formula weight of Na<sub>7</sub>Zr<sub>6</sub>F<sub>31</sub>. Six Na atoms, six Zr atoms, and five sets of six F atoms occupy general sixfold positions of R<sub>3</sub>, while one Na atom is in a onefold special position and one F atom is statistically distributed over a twofold site. Each Zr atom is bonded to eight F atoms arranged as a square antiprism. Six antiprisms share corners to enclose a cuboctahedral cavity which is occupied by one disordered F atom. This structural feature accounts for the unusual stoichiometry of the compound. The Na atoms are located outside the triangular faces of the cuboctahedron. One edge of each antiprism is shared with an antiprism of a different octahedral group of antiprisms, bridging all groups together.

# Introduction

The study of this crystal structure was undertaken primarily because of the curious stoichiometry of the compound. There are a large number of compounds which have this formula type and which, from their X-ray powder patterns, appear to be isostructural. In fact, although the stoichiometry was checked by chemical analysis in some instances, the formula has been assigned to many of these compounds only on the basis of similarity of their powder patterns to those of the well-established 7:6 compounds. Six of these double fluorides were reported by Zachariasen (1948) to have 1:1 composition. Subsequent phase diagram studies by Barton, Friedman, Grimes, Insley, Moore & Thoma (1958) and Barton, Grimes, Insley, Moore & Thoma (1958) showed that they actually have 7:6 ratios, and

<sup>\*</sup> Research sponsored by U.S. Atomic Energy Commission under contract with Union Carbide Corporation.