The Crystal Structure of $\alpha-\mathrm{Li}_{3} \mathrm{AlF}_{6}$ *

By John H. Burns, Anthony C.Tennissen \dagger and George D. Brunton
Chemistry and Reactor Chemistry Divisions, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A.

(Received 17 April 1967)

Abstract

The crystal structure of the room-temperature modification of $\mathrm{Li}_{3} \mathrm{AlF}_{6}$ has been determined by threedimensional X-ray diffraction methods. Crystals are orthorhombic, with unit-cell dimensions $a=9.510$, $b=8 \cdot 2295, c=4.8762 \AA$. Each of the ten atoms of the formula occupies a general fourfold site of space group Pna 2_{1}. Nearly regular AlF_{6} octahedra are linked by Li ions, each of which has six F neighbors at distances in the range 1.87 to $2.42 \AA$. The Al-F bond lengths vary from 1.786 to $1.830 \AA$. Although the pseudo face-centered cubic array of AlF_{6} octahedra in $\alpha-\mathrm{Li}_{3} \mathrm{AlF}_{6}$ is similar to that of $\mathrm{Na}_{3} \mathrm{AlF}_{6}$, its deviations from the ideal cryolite structure are considerable. It is unlikely that $\mathrm{Li}_{3} \mathrm{AlF}_{6}$ transforms to the ideal cryolite structure at elevated temperature.

Introduction

The structure of the mineral cryolite, $\mathrm{Na}_{3} \mathrm{AlF}_{6}$, determined by Náray-Szabó \& Sasvári (1938), is actually monoclinic; but in an idealized cubic form it is recognized as a structure type for a family of related fluorides. These include $\mathrm{K}_{3} \mathrm{AlF}_{6}, \mathrm{~K}_{2} \mathrm{NaAlF}_{6},\left(\mathrm{NH}_{4}\right)_{3} \mathrm{AlF}_{6}$, and $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{FeF}_{6}$. Steward \& Rooksby (1953) studied the structural transitions of these compounds and found that each one becomes cubic at elevated temperature if it is not at room temperature, or else distorts at low temperature if cubic at room temperature. They infer that the non-cubic modifications result from rotation of the AlF_{6} (or FeF_{6}) octahedra out of the most symmetrical orientation as the F atoms are shifted to accommodate alkali cations of various sizes. One exception is $\mathrm{K}_{2} \mathrm{NaAlF}_{6}$ which remains cubic at all temperatures investigated because both kinds of cations are suitably coordinated in the cubic structure. Winkler $(1952,1954)$ found that below $470^{\circ} \mathrm{C} \mathrm{K}_{2} \mathrm{LiAlF}_{6}$ has a rhombohedral structure which becomes trigonal above this temperature. The fact that these two structures resemble cryolite in the arrangement of octahedra but that the compound never exhibits the cubic form is likely due to the inability of Li to have 12 -fold coordination even at elevated temperature.
According to Garton \& Wanklyn (1965) $\mathrm{Li}_{3} \mathrm{AlF}_{6}$ has five polymorphic forms between room temperature and its melting point $\left(783^{\circ} \mathrm{C}\right)$. We undertook a singlecrystal study of the room temperature form, $\alpha-\mathrm{Li}_{3} \mathrm{AlF}_{6}$, because we felt that if a relationship to cryolite could be shown, some understanding of these polymorphs could be had in view of the ease with which cryolite transforms by rotation of the AlF_{6} groups.

Experimental

Lithium aluminum fluoride was prepared from a stoichiometric mixture of reagent grade LiF and com-

[^0]mercial grade AlF_{3} which had been purified by distillation. The components were melted together at about $780^{\circ} \mathrm{C}$ in an evacuated nickel vessel. X-ray powder diffraction indicated the product to be mainly the α phase. A single-crystal specimen of about 0.2 mm in largest dimension was selected for study. Although it was irregular in shape, absorption effects were negligible because of the light atoms of the compound.
Precession and Weissenberg photographs showed the systematic absence of $h 0 l$ when h is odd and 0 kl when $k+l$ is odd. These are characteristic for space groups Pna2 2_{1} and Pnam; the latter was ruled out because a mirror plane perpendicular to the short axis of the crystal would make spatial requirements incompatible with the atomic sizes. The orthorhombic unit cell has dimensions of $a=9 \cdot 510$ (1), $b=8 \cdot 2295$ (3), $c=4.8762$ (1) \AA. These values were obtained from leastsquares adjustment to 35 single-crystal diffractometer 2θ angles, primarily of axial reflections ($\mathrm{Cu} K \alpha_{1}=$ $1.54051 \AA$). There are four formula units in the primitive cell.

Intensity data were obtained from $H K l$ layers with $l=0$ to 4 by the Weissenberg triple-film technique and $\mathrm{Cu} K \alpha$ X-rays. A calibrated film strip was used to evaluate the intensities by visual comparison. About 240 independent reflections were measured and their intensities reduced to structure amplitudes in the usual manner. After the structure was solved, data of higher accuracy appeared desirable, so 617 reflections were measured by 2θ scans with a General Electric singlecrystal orienter and a scintillation-counter detector. Data out to $2 \theta=60^{\circ}$ were collected employing Mo $K \alpha$ radiation. Only these counter-measured data were used for the structure refinement.

The X-ray powder pattern was recorded with a diffractometer and agreed with that reported for $\alpha-\mathrm{Li}_{3} \mathrm{AlF}_{6}$ by Garton \& Wanklyn (1965). It was indexed on the basis of the orthorhombic cell given above, and the intensities calculated from the structure described herein agree with their observed values. Thus, their hexagonal unit cell for the α-modification is erroneous. Probably their indexing of the patterns of the two other forms should be considered only tentative also, espe-
cially since they require large unit cells and many absences. The cubic phase, for example, shows no reflections with a quadratic form less than 10.

Structure determination

A three-dimensional Patterson function calculated with the Weissenberg intensity data was interpreted to yield the positions of one Al and six F atoms in the general sites of space group $P n a 2_{1}$. An electron density map was then evaluated with the phases calculated from these seven atoms and the observed minus calculated amplitudes. This partial difference Fourier synthesis yielded peaks for the location of the three independent Li atoms. A refinement of these positions and individual isotropic temperature factors by the method of least squares resulted in a structure with a conventional R value of $0 \cdot 13$. For calculation of structure factors the scattering curves for $\mathrm{Li}^{+}, \mathrm{Al}^{3+}$, and F^{-}were taken from International Tables for X-ray Crystallography (1962).

The counter-measured data were then collected and refinement was resumed with the addition of anisotropic temperature factors. Shifts in positions from the earlier structure averaged about $0 \cdot 3,0 \cdot 1$, and $0.05 \AA$ for Li, F, and Al atoms, respectively; and the discrepancy factor dropped sharply. Values of the refined parameters and their standard errors are given in Table 1.

The nineteen strongest reflections were omitted from the final refinement cycles because they were observed systematically to be weaker than the calculated values, probably because of secondary extinction. The discrepancy index, $R=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right| \Sigma\left|F_{o}\right|$, for the other 598 reflections was $0 \cdot 017$.

The full-matrix least-squares program of Busing, Martin \& Levy (1962) was used for the refinement. The weight, w, of each observation was taken equal to the reciprocal of its variance which was calculated from the counting statistics plus 3% of the intensity as an estimate of the other errors in the measurements. At the end of the refinement the standard deviation of an observation of unit weight, $\left[\Sigma w\left(F_{o}^{2}-F_{c}^{2}\right) /\left(n_{o}-\right.\right.$ $\left.\left.n_{v}\right)\right]^{\frac{1}{2}}$, was $1 \cdot 0$. In this expression n_{o} and n_{v} are numbers of observations and variables, respectively.

In Table 2 are listed the values of the observed and calculated structure factors and the phase angles.

Results and discussion

The structure of $\alpha-\mathrm{Li}_{3} \mathrm{AlF}_{6}$ is represented in Fig. 1 by a stereoscopic pair of drawings including a little more than the contents of one unit cell. For clarity of representation atoms are shown as small circles. The F atoms around each Al atom are connected by lines to make an octahedron; the Li atoms are between the

Table 1. Final structure parameters and standard errors $\left(\times 10^{5}\right)$ for $\alpha-\mathrm{Li}_{3} \mathrm{AlF}_{6}$

	$x(\sigma)$	$y(\sigma)$	$z(\sigma)$	$\beta_{11}{ }^{*}(\sigma)$	$\beta_{22}(\sigma)$	$\beta_{33}(\sigma)$	$\beta_{12}(\sigma)$	$\beta_{13}(\sigma)$	$\beta_{23}(\sigma)$
Al	12779 (4)	24031 (3)	$0 \dagger$	153 (3)	145 (4)	398 (13)	-9 (2)	0 (4)	0 (8)
F(1)	22373 (7)	6821 (8)	14055 (26)	271 (7)	276 (9)	804 (34)	72 (6)	37 (14)	88 (17)
F(2)	2326 (8)	24326 (7)	30699 (23)	258 (7)	377 (9)	743 (40)	-31(6)	122 (15)	-40 (13)
F(3)	23609 (7)	23421 (8)	69815 (22)	261 (7)	389 (10)	632 (41)	- 50 (6)	122 (15)	-34 (15)
F(4)	2888 (7)	40216 (8)	85078 (24)	304 (7)	319 (8)	936 (33)	110 (7)	26 (16)	97 (15)
F(5)	24358 (7)	38174 (8)	17257 (25)	264 (6)	313 (9)	877 (35)	-84 (6)	-32 (14)	-52 (16)
F(6)	1361 (6)	9168 (8)	83164 (24)	269 (7)	314 (8)	848 (35)	-104 (6)	-1 (14)	-82 (14)
Li(1)	37529 (21)	34902 (28)	50727 (79)	292 (20)	663 (30)	1776 (90)	-15 (20)	258 (38)	-60 (70)
Li(2)	10546 (22)	45729 (27)	49687 (93)	311 (20)	547 (28)	1372 (88)	22 (20)	-28 (58)	218 (61)
Li(3)	35387 (22)	54574 (26)	235 (92)	386 (21)	462 (27)	957 (81)	-96 (19)	23 (58)	-8 (59)
	* Coefficients in the temperature factor expression: $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 h k \beta_{12}+2 h l \beta_{13}+2 k l \beta_{23}\right)\right]$. \dagger Arbitrary value to establish origin on 2_{1} axis.								

Fig. 1. Stereoscopic pair of drawings of the structure of $\alpha-\mathrm{Li}_{3} \mathrm{AlF}_{6}$.
octahedra. The lattice on which the octahedra are arrayed is very similar to the one in $\mathrm{Na}_{3} \mathrm{AlF}_{6}$, a fact that will be examined in detail later.
Interatomic distances and their standard errors are listed in Table 3. These include all the cation-anion contacts as well as the $\mathrm{F}-\mathrm{F}$ distances within one octahedron. The next nearest $\mathrm{Li}-\mathrm{F}$ distance is greater than $3 \cdot 0 \AA$. It is noteworthy that the five shortest F-F distances are within edges of the AlF_{6} octahedron which
are shared with Li atoms: one with $\mathrm{Li}(1)$, two with $\mathrm{Li}(2)$, and two with $\mathrm{Li}(3)$. Expressed differently, the $\mathrm{F}-\mathrm{Al}-\mathrm{F}$ angles subtended by the shared edges average 87.75° compared with 91.60° for the unshared edges. This is a good example of the effect of repulsion of the cations sharing an edge, as stated in Pauling's (1960) fourth rule for the stability of complex ionic crystals.

In Fig. 2 more details of coordination and thermal motion are shown. Each cation and its surrounding

Table 2. Observed and calculated structure factors ($\times 10$) and phase angles (millicycles) Reflections omitted from the refinement are denoted by X after the first Miller index.

H	OBS	cal	ang	H	085	cal	ang	H	OBS	cal	ang	H	abs	cal	ANG	H	Obs	cal	AnG												
	H	0	-			H	0		n	31	1		H	0	2		H	72	,		H	43	3		H	34			H	35	5
2	34	33	0	2	254	261	0	9	47	48	98	0	285	300		6	253	255	59	9	95	93	210	1	82	80	33	0		33	23
4 4	$\times 678$	063	0	3	74	73	0	10	123	123	11	2 x	9811	1173	249	7	125	126	-170	10	293	295	-247	2	262	260	-0	1	62	61	22
6	45	43	0	4	89	90	0	11	59	59	-41	$4 \times$	862	1016	-2	-	140	139	230	11	57	56	188	3	42	42	-25	2	281	278	-14
${ }^{8 \times}$	$\times 641$	714	0	5	119	120	0	12	143	144	-191	$6 \times$	477	501	-227	\bigcirc	57	56	-146					4	13	9	168	3	384	91	141
10	109	111	-	6	52	52	0					8	95	93							H	53	3	5	25	26	-69	4	384	388	-241
12	114	114	0	7	2	2	0		H	41	1	10	106	107	-218		H	12	2					6	14	14	171	5	96	97	207
	H	1	0	9	122	$\begin{aligned} & 122 \\ & 138 \end{aligned}$	0	1	38	37	61	12			-35	0	38	38	-229	0	$\begin{aligned} & 321 \\ & 53 \end{aligned}$	$\begin{aligned} & 322 \\ & 54 \end{aligned}$	$\begin{array}{r} -220 \\ 211 \end{array}$	7	26	24	163 -69	6	150 51	$\begin{array}{r} 150 \\ 53 \end{array}$	${ }_{39}{ }^{26}$
	${ }^{H}$	2		10	288	286	0	2	143	143	-178		H	1	2	1	55	95	134	2	166	165		d	61	63	41	8	31	32	-230
$\frac{1}{2}$	112	110	\bigcirc					3	140	141	20					?	${ }^{80}$	17	-229	3	37	38	171	10	245	243	-6				
${ }_{3}^{2 x}$	+ 6153	681 144	0			H	0	4	271	274 89	- $\begin{array}{r}48 \\ -183\end{array}$	$\frac{1}{2}$	244	203	-148 -37	3	110 252	112 253	-20 10	5	88	78	${ }_{-188}^{172}$		H					4	5
4	79	79	0	0	315	320	0	6	330	338	203	3	146	148	114	5	${ }_{108}$	108	-60	6	95	95	-26					1	26	24	207
5	189	195	0	1	144	145	0	7	175	175	-100	4	286	287	211	${ }^{\circ}$	81	80	-180	7	49	48	-114	0	400	401	0	2	95	95	203
6	183	178	0	2	30	24	0	8	255	255	12	5	69	70	-140	7	56	58	15	8	227	225	-232	1	107	109	-26	3	91	91	-171
7	50	49	0	3	28	27	0	9	103	102	-201	6	427	$4{ }^{43}$	20	1	33	51	17	${ }^{\circ}$	22	19	40	2	28	28	-110	4	78	77	-51
8	104	103	0	4	1	${ }^{6}$	0	10	61	60	-66	7	132	133	-201					10	74	75	-207	3	66	55	-43	5	38 213	38 213	
9	112	114	0	5	33	33	0	11	92	91	46	8	243	24	248		H	92	2					4	54	52	-10	6	213	213	-218
11	425 39	445 33	0	7	${ }_{113}^{11}$	$1{ }^{6}$	0	12	177	173	44	10	55 34	54 33	- $\begin{array}{r}-44 \\ -220\end{array}$	1	38	35	-35		H	-	3	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	29 20	30 28	-37 -140	7			
12	23	9	0	8	224	224	0		H	51	1	11	107	106	154	2	148	147		1	69	69	197	7	88	88	-54		1	59	5
13	78	80	0	9	68	68	0					12	150	153	209	3	71	69	-66	2	136	134	245	8	17	206	0				
	H	20	0			H	0	0	206	207.	250 179		H	H	2	5	43	42	-231 78	4	43 73	43	-76 -46	-	17	20	212	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	45	43	-196 -244
								2	221	218	23					6	132	136	-18	5	94	93	238		H	5 4		2	31.		-148 -40
$0 \times$	$\times 427$	445	0	1	54	55		3	248	252	- 242	0	23	25	179	7	34	35	147	7	209 03	209 82	-247 176					3	265	30 265	-240
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 52 \\ & 20 \end{aligned}$	51 17	8	2	146	145 12	\bigcirc	4	248	252 33	-230	$\frac{1}{2}$	62 38	63 30	68 13		H	10	2	7	83 78	828	176 5	1 2	245	242	-109	5	265 46		-242 222
3	59	59	0	4	24	22	0	6	142	144	-32	3	100	98	-94					9	43	46	-176	3	63	${ }^{2}$	${ }^{8}$	6	48	51	244
4	134	131	0	5	82	79	0	7	41	39	-147	4	397	409	1	0	185	186	84					4	91	90	227	7	75	70	156
5	133	131	-	6	172	171	0		154	152	192	5	33	34	116	1	102	99	-136		H	7	3	5	36	237	203				
6	13	14	0	7	${ }^{91}$	${ }_{3} 1$	0	9	66	${ }^{67}$	-206	7	${ }^{65}$	66	-320	2	73	45	154	0	163	158	212		${ }_{2}^{255}$	250	-10		H	6	5
8	60 273	61 278	0		${ }^{6}$	3		11	18	18	113	-	121	120	3 t	4	166	166	-65	1	68	70	71	8	120	119	179	1	13		
9	67	67	0			H 10	0					9	50	40	-96	5	84	83	121	2	95	96	-107	9	${ }_{80}$	02	-112	2	97	100	-240
10	82	85	0						H	461	1	10	30	21	-215					3	126	127	174					3	55	56	162
11	42	40	0	0	151	153	0					12	82	80	-12*		H	11	2	4	278	280	-234		H	6	4	4	67	70	205
12	106	105	0	1	2	3	0	1	110	100	-219	12	149	149	-33					5	78	77	144					5			-205
13	56	58	0	2	102	100	0	2	243	244	246					1	52	54	25	6	43	44	-21	0	69	68	200				
				3	124	126	8	3	78	80	-227		H	1	2					7	23	19	-244	1	120	122	-248			7	5
	H	3	0	4	192	191	0		54	55	-12						H	$0{ }^{3}$	3	8	89	91	-244	2	278	278	-231				
				5	102	105 36	0	5	76	76	- 147	1	${ }^{67}$	678											159	158 244	-173	0	141 80		-189
$\frac{1}{2}$	197	91	0	6	34	36	0	7	17	${ }^{15}$	-232	3	${ }^{231}$	232 81	-59	4	163 135	129	-243 -30		H	©	3		${ }_{146}^{246}$	244 144	-34	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	180	104	
${ }_{3}^{2}$	126	151 27	0			H 11	0	?	58	${ }_{96}^{15}$	${ }_{78}^{22}$	3	168	164	-236	4	340	345	-247	1	86	86	-208	6	172	168	246	,	82	62	-134
+	25	26	0					9	92	93	-178	5	104	103	59	8	134	133	19	2	223	222	237	7	102	103	-225	4	172	170	222
5	127	128	0	1	81	83	0	10	170	170	240	6	231	228	-6	10	74	74	-234	3	80	${ }^{11}$	246	8	89	67	8				
6	380	396	0	2	121	121	0	11	51	52	-242	7	32	32	135	12	81	80	-73	4	21	23	-239 185							0	6
7	79	80	0	3	79	80	\bigcirc					${ }_{8}$	142	143	- 215					6	46	45	-185		H	7					
8	21	21	0	4	25	28	0		H	17	1	10	39 136	134	$\begin{array}{r}-75 \\ \hline 9\end{array}$		H	13	3	${ }^{6}$	61 29	63	-163	1	46	47	144	$\begin{aligned} & 0 \\ & 2 \end{aligned}$	495	302 52	
10	74	73	${ }_{0}$			H 0	1	0	371	379	222	11	25	25	-63	0	130	158	-240					2	107	103	38	+	30	36	19
11	12	8	0					1	137	136	-156	12	78	79	-212	1	116	117	-54		H	9	3	3	67	67	-209	6	62	58	-210
12	30	37	0	2 x	2 434	426	-248	2	74	75	106					2	225	221	-6					4	109	108	-173				
				4	146	146	-20	3	52	52	-89		H	H 4	2	3	94	92	138	0	292	292	241	5	67	68	-38			1	6
	H	4	0	6	103	104	-238	4	194	197	-213					4	262	263	240	1	203	204	-241	6	147	146	-52				
				8	111	111	49	s	56	56	14	0	248	251	29	5	107	109	-113	2	88	90	231	7	96	98	119	1	51	52	-144
0	170	169	0	10	277	284	247	6	59	58	105	1	124	125	225	6	107	107	-238	3	63	64	-232					2	194	194	
1	62	62	0	12	53	50	-95	7	73	72	-245	2	182	174	-240	7	73	72	-236	4	53	54	221		H	8	4	3	20	19	
2	60	60	0					8	202	204	245	3	85	84	79	8	135	133	-231	6	88	80	-217					5	32	70	-175
3	161	163	0			H 1	1	9	30	34	-200	4	288	288	-13	-	63	4	-173	6	68	68	221	1	77	169	-84	6	31		
4	401	403	0					10	41	43	-106	5	83	83	176	10	42	42	-139				3	1		139	-64	6	31		
5	23	25	0	0x	$\times 474$	459	246					6	105	105	214	11	${ }_{120}^{21}$	${ }_{122}^{21}$	121				3	$\frac{2}{3}$	140 80 8	$\begin{array}{r}139 \\ 82 \\ \hline\end{array}$	-202				
6	11	13	0	1	${ }^{85}$	81	-242		H	H 8	1	7	174	175	-7	12	120	122	226					4	72	76				2	。
7	29	29	0	2	15	15	183						173 22	175 24	-7		H	2	3	$\frac{1}{2}$	134	1309	-231	5	19	72	43 134		117		
${ }_{9}^{8}$	134	130	0	4	${ }_{251}{ }^{152}$	1488818	-237	2	194	190	-245	10	51	49	-185					3	47	50	-229					1	55	36	174
10	15	16	0	5	34	34	-241	3	107	105	222	11	63	62	-90	1	54	55	21						H	9	4	2	158	159	242
11	10	0	0		29	28	-224	4	90	87	-7					$2 \times$	512	507	246		H	-	4						18	26	
12	149	146	0	7	125	127	125	5	58	60	-174		H	H	2	3	34	35	-200					1	76	76	35	5	128	128	-32
				8	216	220	238	6	226	226	-242					4	21	19	49		55	574	-243	3	4	148	-61	5	100	97	-243
	H	5	0	9	77	75	-149	7	102	102	244	$\frac{1}{2}$	71	71	-99	5	99	98	121	$2 \times$	552	574	-243	3	45	45	-61	6	100	97	-243
				10	31	32	-227	8	108	109	-61	2	317	${ }_{34} 32$	38	${ }^{6}$	51 50		-138	6	323	324				0	5				
${ }_{2}^{1}$	1 $\times 100$	569	\bigcirc	11	114	115	-142 -230	9	73	72	109	${ }^{3}$	153	155	209	8	52	53	-165	8	168	167	-36								6
$2 x$	2x 516	569 46	0	${ }_{13}^{12}$	1	${ }^{1} 6$	-60		H	H 9	1	5	38	39	8	9	59	59	171	10	119	118	-218	2	127	127	-234	1	32	31	
4	29	27	0									7	366	381	-6	10	339	340	242					4	116	116		2	96	98	
3	60	61	0			H	1	0	110	111	23	7	103	102		11	49	49	-130		H	1	-	6	227	${ }_{128}^{225}$	245		88	30	164
6	71	67	0					$\frac{1}{2}$	161	15	-32 43	8	154	153 47	-245 158		H	3	3	1	59	58	139	-			-32	5	89 33	90 35	
7	${ }_{2}{ }^{3}$	118	0				168 -237		220	218 204	-43	10	46	47	158 33		+		3	2	205	200	15		H	1	5				
9	20 21	18 23	-	${ }_{3}^{2 x}$	1 $\times 31$ 51	369 50	-88	4	208	211	-86	11	47	47	223		$\times 1022$	1168	249	3	52	${ }^{52}$	186							14	6
10	345	348	0	4	324	328	14	5	178	176	-172					$\frac{1}{2}$	244	246	-235	4	158	158	-218	0	37	736	209 -162				
11	110	111	0		+ 40	521	245 240	7	$1 \begin{aligned} & 115 \\ & 129\end{aligned}$	128	${ }_{3}^{21}$			H 6	2	3	88	${ }_{81}^{64}$	-233	6	252	251	-69	2	139	139	-162 3	1	71	72	-67 246
12	27	28	0	${ }_{7} \times$	86	${ }^{36}$	-71	8	${ }_{6} 6$	${ }_{68}$	-167	0	134	131	126		265	266	-247	7	104	104	86	3	109	107	247	2	111	112	242
	H	6	0	8	273	278	-15					1	204	203	-206	5	84	65	-209	8	186	183	${ }_{-}^{241}$	4	247	245	-247	3	70	71	-156
				9	85	85	162			H 10	1	2	427	443	227	6	${ }_{73}$	56		10	${ }_{79}^{82}$	${ }_{80}^{85}$	-55 50	5	47	4.46	-148	4	203	202	10
$0 \times$	0 789	935	0	10	85	86	-220					3	253	258	-147	7	71	${ }^{7} 16$	-207	10	79	80	50	7	43	43					
1	411	417	0	11	63	${ }^{63}$	81	1	49	49	-135	4	398	411 230	-67	9	${ }_{1}^{403}$	416	-244		H	12	4		80	88	226			15	
2	101	101	0	12	165	(101	24	2	98	97	-184	5	229	216	- 260	10	8	${ }_{80}$	-153			2	+	9	18	18	189	1	40	40	
3	165	166	\bigcirc	13	56	55	82	${ }_{3}^{3}$	98 90	98		7	142	141	-210	11	12	14	-139	$?$	375	374	-8					2	193	190	-10
4	282 148	288 149	0			H	1	5	105	107	-221	8	43	40	-37					1	52	52	-198		H	2	5				
5	148	149	-			H	1	6	166	163	171	9	26	28	232		H	4	3	2	138	136	-200							1	6
7	109	100	0	0	251	265	215					10	47	44	199					3	69	71	-147		41	4.4	133				
9	312	315	0	2 x	- 263	261	-35			H 11	1			H 7	2	1	100	299	168 250	4	53 51	49	188	${ }_{3}^{2}$	207	205	-249 -202	0	276	275	-8
9	211	211	0		2 825	1165								H	2	3	63	62	-225	6	74	74	${ }_{248}$	4	87	88	-76				
110	39 17	39 16	0		+291	${ }_{833}^{297}$	-87 249		83 73	${ }_{73} 8$			21	18	187	4	65	66	171	7	57	59	-114	5	18	15	-94				
11	17	16	0	${ }_{5}$	4×881 5 234	${ }_{235}^{833}$	-162	2	94	95	58	2	110	109	-70	5	134	133	190	8	197	193	-25	6	263	265	-246				
	H	7	0	$6 \times$	¢ 471	510	-11	3	107	106	-159	3	117	117	143	6	65	64	-220	9	78	80	104	7	67	66	-120				
				7	129	130	-8					4	123	122	189	7	31	31	-121	10	41	40	-135	8	88	86					
1	1140	136	0	8	124	122	191					5	95	95	-69	8	102	100	197												

Table 3. Interatomic distances and standard errors

	Distance	$\left(10^{3} \sigma\right)$		Distance	$\left(10^{3} \sigma\right)$
$\mathrm{Al}-\mathrm{F}(4)$	$1.786 \AA$	(1)	$\mathrm{Li}(1)-\mathrm{F}(2)$	$1.874 \AA$	(3)
$\mathrm{F}(2)$	1.797	(2)	$\mathrm{F}(3)$	1.874	(3)
$\mathrm{F}(3)$	1.797	(1)	$\mathrm{F}(5)$	2.075	(4)
$\mathrm{F}(5)$	1.810	(1)	$\mathrm{F}(6)$	2.114	(4)
$\mathrm{F}(1)$	1.819	(1)	$\mathrm{F}(1)$	2.136	(3)
$\mathrm{F}(6)$	1.830	(1)	$\mathrm{F}(6)$	2.416	(3)
$\mathrm{Li}(2)-\mathrm{F}(4)$	1.865	(3)	$\mathrm{Li}(3)-\mathrm{F}(5)$	1.900	(3)
$\mathrm{F}(4)$	1.927	(5)	$\mathrm{F}(1)$	1.921	(5)
$\mathrm{F}(1)$	1.991	(3)	$\mathrm{F}(3)$	2.012	(3)
$\mathrm{F}(2)$	2.138	(3)	$\mathrm{F}(6)$	2.069	(3)
$\mathrm{F}(5)$	2.148	(4)	$\mathrm{F}(6)$	2.076	(4)
$\mathrm{F}(3)$	2.424	(3)	$\mathrm{F}(2)$	2.217	(3)
$\mathrm{F}(1)-\mathrm{F}(2)$	2.524	(1)	$\mathrm{F}(2)-\mathrm{F}(6)$	2.634	(2)
$\mathrm{F}(3)$	2.556	(2)	$\mathrm{F}(3)-\mathrm{F}(4)$	2.519	(1)
$\mathrm{F}(5)$	2.592	(1)	$\mathrm{F}(5)$	2.614	(2)
$\mathrm{F}(6)$	2.510	(1)	$\mathrm{F}(6)$	2.505	(1)
$\mathrm{F}(2)-\mathrm{F}(4)$	2.581	(2)	$\mathrm{F}(4)-\mathrm{F}(5)$	2.581	(1)
$\mathrm{F}(5)$	2.473	(1)	$\mathrm{F}(6)$	2.561	(1)

Fig. 2. Coordination polyhedra for each cation. Atoms are represented by thermal ellipsoids.
octahedron of F atoms is illustrated by means of the 50% probability ellipsoids of thermal motion derived from the temperature factors (Johnson, 1965). From the shapes and orientations of these ellipsoids the greater influence on the thermal motion of the F atoms by the Al-F bonds than by the $\mathrm{Li}-\mathrm{F}$ bonds is apparent. Both kinds of bond are principally ionic in character, but the Al-F electrostatic bond strength is greater by at least a factor of three. Thus the F atoms vibrate more perpendicular to the Al-F lines than along them, while the presence of the Li atoms results in no apparent constraints on the thermal motion. Also it appears that the nearly regular AlF_{6} octahedra are achieved at the expense of regularity around the Li atoms, which have six neighbors but with a wide range of distances.
It is important to compare the structure of $\alpha-\mathrm{Li}_{3} \mathrm{AlF}_{6}$ with that of cryolite because the latter is a well known structure type. Steward \& Rooksby (1953) have examined the family of compounds related to cryolite and have concluded that while they all have the basic feature of a three-dimensional framework of AlF_{6} octahedra linked by alkali ions, some members have the
octahedra rotated out of the most symmetrical orientation. These workers also observed that at elevated temperatures the misorientation and distortions, wherever present, were removed and the cubic symmetry of the idealized cryolite structure achieved.

A comparison of the structures of cryolite and α $\mathrm{Li}_{3} \mathrm{AlF}_{6}$ is shown in Fig.3. The pseudo-cubic cells shown are chosen in such a way as to emphasize the relationship to the idealized cubic cryolite structure rather than to show the actual crystal symmetries which are monoclinic and orthorhombic, respectively. The idealized structure is visualized by rotating the octahedron* in the cryolite structure so that its fourfold axes point along the cube edges. Then the Na atoms on the edges are in octahedral coordination, and the Na atoms within the cell (larger circles for ease of distinction) have 12 F neighbors, three from each of the four AlF_{6} octahedra around it. Indeed, this is pre-

* The octahedra on the left and right faces of the cube are oriented the same, but those centered in the other faces are in a symmetry related orientation. This difference disappears in the idealized structure.

Fig. 3. Comparison of the structures of cryolite (upper) and $\alpha-\mathrm{Li}_{3} \mathrm{AlF}_{6}$. The smallest circles represent Al atoms. Only one octahedron of F atoms is shown, but each Al atom has an octahedron associated with it. Medium and large circles distinguish cations, Na or Li in the respective structures, which are identical except for symmetry.
sumed to be the structure of $\mathrm{Na}_{3} \mathrm{AlF}_{6}$ when it becomes cubic at $540^{\circ} \mathrm{C}$. In the structure of $\mathrm{K}_{2} \mathrm{NaAlF}_{6}$, which is cubic at all temperatures studied, K atoms occupy the sites within the cube and Na atoms the sites on the edges.

The deviations from the ideal cryolite structure are greater in $\alpha-\mathrm{Li}_{3} \mathrm{AlF}_{6}$ than in $\mathrm{Na}_{3} \mathrm{AlF}_{6}$, but the similarity can still be recognized by reference to Fig.3. The octahedra are in a pseudo face-centered cubic array, but the Li atoms are displaced from the center of the edges and the center of the cell. The 'cube' of eight Li atoms within the cell is also quite distorted.

It is unlikely that $\mathrm{Li}_{3} \mathrm{AlF}_{6}$ exists at any temperature in the idealized cryolite structure in which two thirds of the Li atoms would have 12 -fold coordination; but this would not preclude there being a cubic structure of this type which had these Li atoms in a disordered arrangement within the space surrounded by 12 F atoms. The cubic cell assigned by Garton \& Wanklyn (1965) to $\gamma-\mathrm{Li}_{3} \mathrm{AlF}_{6}$ does not have the proper dimensions indicative of a cryolite structure; in fact, the assignment of cubic symmetry to this phase is questionable as described earlier. On the other hand, δ - or
$\varepsilon-\mathrm{Li}_{3} \mathrm{AlF}_{6}$ may be cubic; data are not available for their powder patterns.

References

Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS, a Fortran Crystallographic Least-Squares Program, ORNL TM-305: Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Garton, G. \& Wanklyn, B. M. (1965). J. Inorg. Nucl. Chem. 27, 2466.
International Tables for X-ray Crystallography (1962). Vol. III, p. 202. Birmingham: Kynoch Press.
Johnson, C. K. (1965). ORTEP: A Fortran Thermal-Elipsoid Plot Program for Crystal Structure Illustrations, ORNL-3794, Revised: Oak Ridge National Laboratory, Oak Ridge, Tennessee.
NÁray-SZabó, S. \& SasvÁri, K. (1938). Z. Kristallogr. 99, 27.

Pauling, L. (1960). The Nature of the Chemical Bond, 3rd edition, p. 561. Ithaca: Cornell Univ. Press.
Steward, E. G. \& Rooksby, H. P. (1953). Acta Cryst. 6, 49.
WINKLER, H. G. F. (1952). Heidelberg. Beitr. Min. 3, 297; Structure Reports, 16, 174.
Winkler, H. G. F. (1954). Acta Cryst. 7, 33.

The Crystal Structure of $\mathrm{Na}_{7} \mathrm{Zr}_{6} \mathbf{F}_{31}{ }^{*}$

By John H. Burns, Raymond D. Ellison and Henri A. Levy
Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A.

(Received 23 May 1967)

Abstract

The structure of $\mathrm{Na}_{7} \mathrm{Zr}_{6} \mathrm{~F}_{31}$ was determined by single-crystal X-ray and neutron diffraction methods. Zirconium atomic positions were deduced from an X-ray Patterson map, and the remaining atomic sites from electron-density maps. Refinement including anisotropic thermal parameters was carried out by the method of least squares. The neutron scattering amplitude of Zr was determined to be $0.69 \pm 0.01 \times 10^{-12} \mathrm{~cm}$. The rhombohedral unit cell, with $a=8.5689 \AA, \alpha=107^{\circ} 21^{\prime}$, contains one formula weight of $\mathrm{Na}_{7} \mathrm{Zr}_{6} \mathrm{~F}_{31}$. Six Na atoms, six Zr atoms, and five sets of six F atoms occupy general sixfold positions of $R \overline{3}$, while one Na atom is in a onefold special position and one F atom is statistically distributed over a twofold site. Each Zr atom is bonded to eight F atoms arranged as a square antiprism. Six antiprisms share corners to enclose a cuboctahedral cavity which is occupied by one disordered F atom. This structural feature accounts for the unusual stoichiometry of the compound. The Na atoms are located outside the triangular faces of the cuboctahedron. One edge of each antiprism is shared with an antiprism of a different octahedral group of antiprisms, bridging all groups together.

Introduction

The study of this crystal structure was undertaken primarily because of the curious stoichiometry of the compound. There are a large number of compounds which have this formula type and which, from their X-ray powder patterns, appear to be isostructural. In

* Research sponsored by U.S. Atomic Energy Commission under contract with Union Carbide Corporation.
fact, although the stoichiometry was checked by chemical analysis in some instances, the formula has been assigned to many of these compounds only on the basis of similarity of their powder patterns to those of the well-established 7:6 compounds. Six of these double fluorides were reported by Zachariasen (1948) to have $1: 1$ composition. Subsequent phase diagram studies by Barton, Friedman, Grimes, Insley, Moore \& Thoma (1958) and Barton, Grimes, Insley, Moore \& Thoma (1958) showed that they actually have 7:6 ratios, and

[^0]: * Research sponsored by the U.S. Atomic Energy Commission under contract with Union Carbide Corp.
 \dagger Research participant from Lamar State College of Technology, Beaumont, Texas.

